

Introduction to Climate Change

Alessandra Tedeschi, DBL February 21, 2023 – CHOICE JSTE, Larissa (GR)

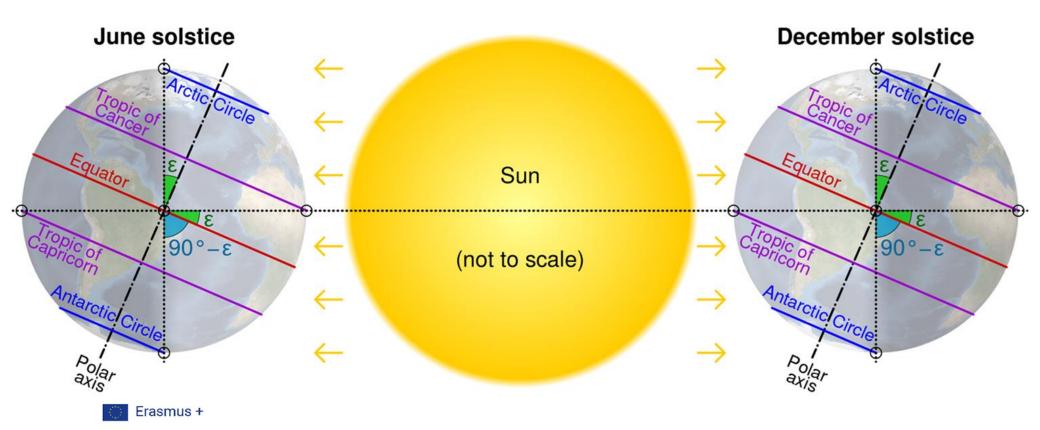
Outline

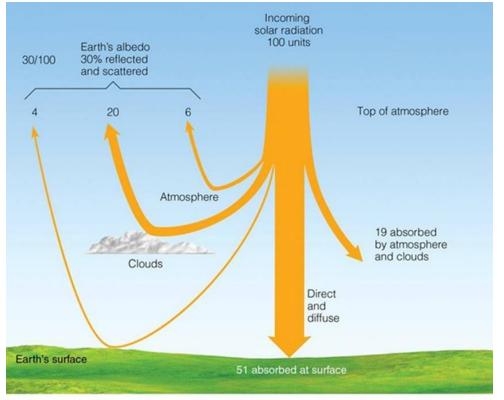
- 1. Climate: what it is and what it is not
- 2. Climate Change: observations, evidences, and projections
- 3. Climate change mitigation and adaptation strategies

Why it is important to understand Climate Change?

- Knowing the difference between weather and climate is the first step to pinpoint the two phenomenons and their differences
- Understanding climate processes is essential to recognise the limits and the uncertainties related to mitigation strategies
- Models, observations and measurements are the ingredients of understanding climate change evident and subtle effects

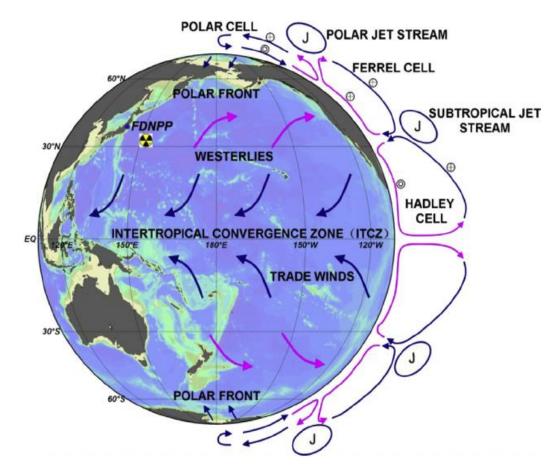
Section 1 Climate


What it is and what it is not


What does «climate» mean?

From the Ancient Greek Κλίμα, meaning «slope», «inclination»

How does radiation work?



© 2007 Thomson Higher Education

The Earth's climate system depends entirely on the Sun for its energy. Solar radiation warms the atmosphere and is fundamental to atmospheric composition, while the distribution of solar heating across the planet produces global wind patterns and contributes to the formation of clouds, storms, and rainfall.

Atmospheric Symmetric Circulation

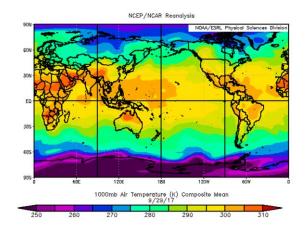
Atmospheric circulation transports heat over the surface of the Earth that affects the water cycle, including the formation of clouds and precipitation events. The movement of air masses brings us our daily weather, and long-term patterns in circulation determine regional climate and ecosystems.

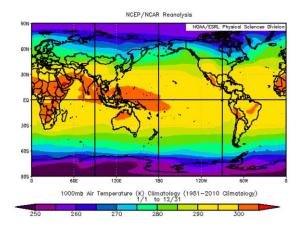
Meteorology and Climatology

μετέωρος metéōros

μετα- <u>meta-</u> "above" ἀείρω aeiro "I lift up" -λογία <u>-logia</u> "<u>-(o)logy</u>",

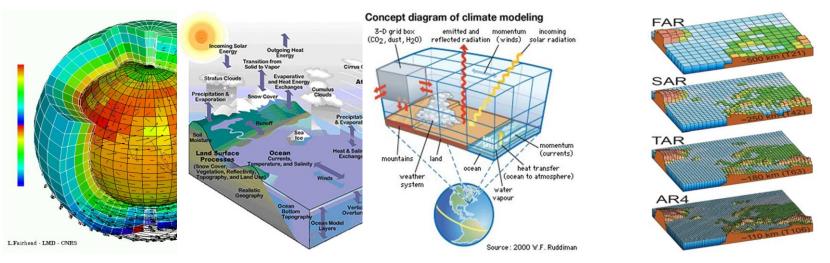
"the study of things which are in the air, in the sky or above us "


It specifies that there is a location (above us) and an observation



Meteorology and Climatology

Meteorology focuses on *short-term weather events* lasting up to a few weeks, whereas **climatology** studies the *frequency and trends* of those events *over years*.



Climate Model

Do we have any instruments to assess the future?

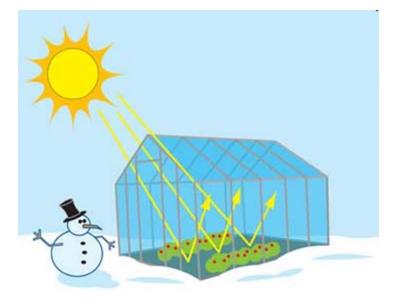
Unlike weather forecasts, which describe a detailed picture of the expected daily sequence of conditions starting from the present, climate models are **probabilistic**, indicating areas with higher chances to be warmer or cooler and wetter or drier than usual. Climate models are **based on global patterns in the ocean and atmosphere**, and records **of the types of weather that occurred under similar patterns in the past**.

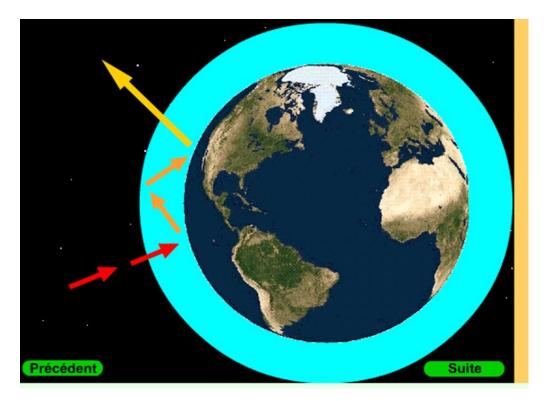
Section 2 Climate Change

Observations, evidences and projections

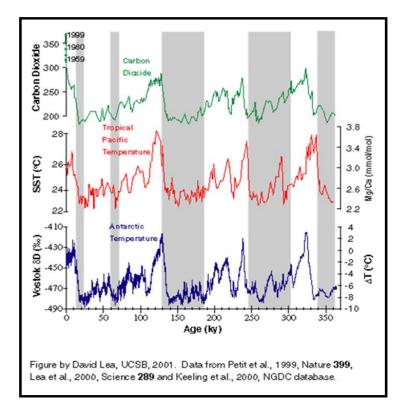
Greenhouse Effect

A greenhouse stays warm inside, even during the winter. In the daytime, sunlight shines into the greenhouse and warms the plants and air inside.


The greenhouse effect is a **process** that occurs when **gases in Earth's atmosphere trap the Sun's heat.** This process makes **Earth much warmer** than it would be without an atmosphere. The greenhouse effect is one of the things that **makes Earth a comfortable place to live**.

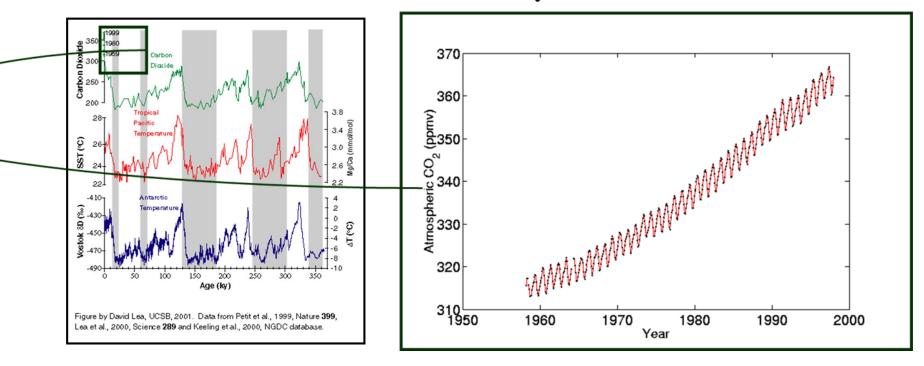

Climate Kids – NASA

Greenhouse Effect



Ice Ages

•CO2 (Green)

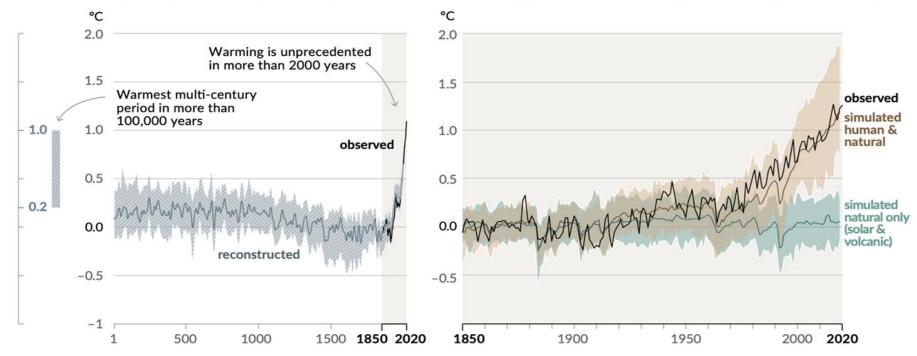

•Surface Temperature on tropical pacific ocean (red)

•Antartic Temperature (Blue)

Ice cycle is about 100.000 years

We have a problem

Carbon Dioxide concentration is increasing at a rate never recorded before.

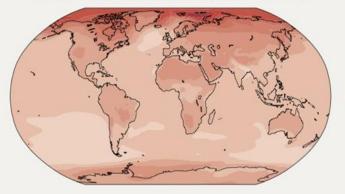


Current Climate Change

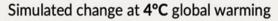
Changes in global surface temperature relative to 1850-1900

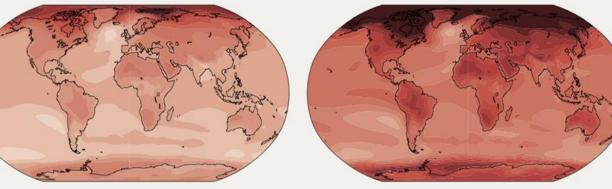
(a) Change in global surface temperature (decadal average) as reconstructed (1–2000) and observed (1850–2020)

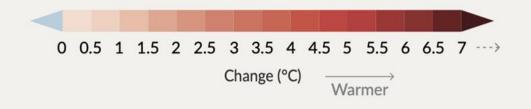
(b) Change in global surface temperature (annual average) as **observed** and simulated using human & natural and only natural factors (both 1850–2020)



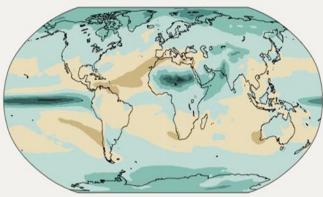
Temperature


(b) Annual mean temperature change (°C) relative to 1850–1900

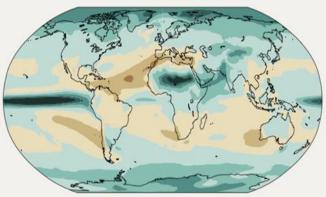

Across warming levels, land areas warm more than ocean areas, and the Arctic and Antarctica warm more than the tropics.


Simulated change at 1.5°C global warming

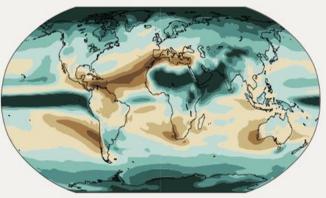
Simulated change at 2°C global warming



Precipitations


(c) Annual mean precipitation change (%) relative to 1850–1900

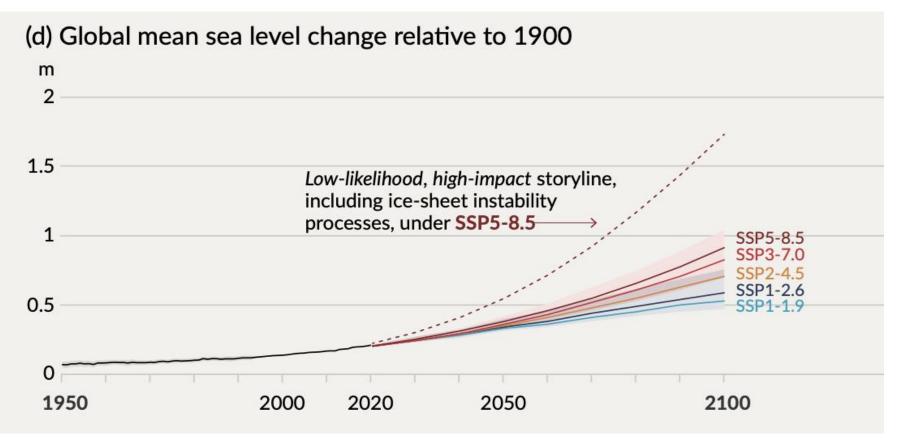
Simulated change at 1.5°C global warming



Precipitation is projected to increase over high latitudes, the equatorial Pacific and parts of the monsoon regions, but decrease over parts of the subtropics and in limited areas of the tropics.

Simulated change at 2°C global warming

Simulated change at 4°C global warming

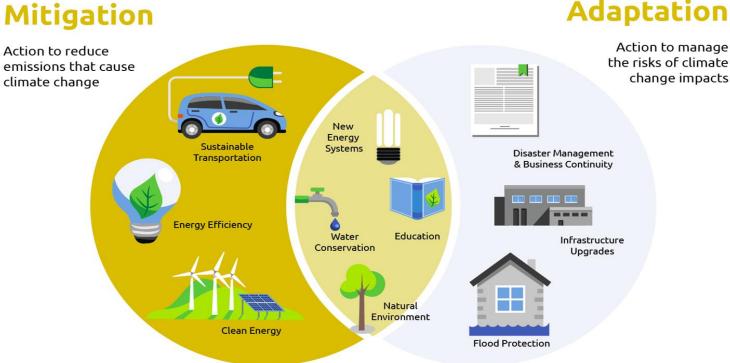


Relatively small absolute changes may appear as large % changes in regions with dry baseline conditions.

Sea Levels

Section 3 Climate Change Mitigation & Adaptation

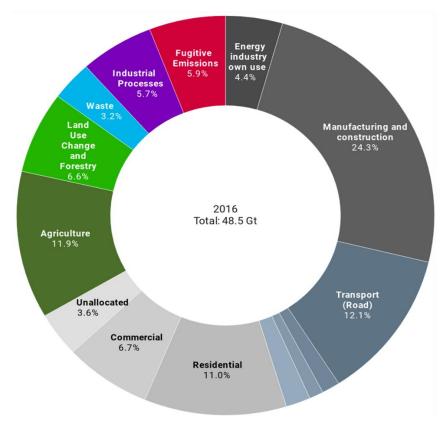
Mitigation VS Adaptation


Mitigation – reducing Climate Change Involves reducing the flow of heat-trapping greenhouse gases into the atmosphere

Adaptation – adapting to life in a changing climate Involves **adjusting** to actual or expected future climate

Climate Change Mitigation & Adaptation actions

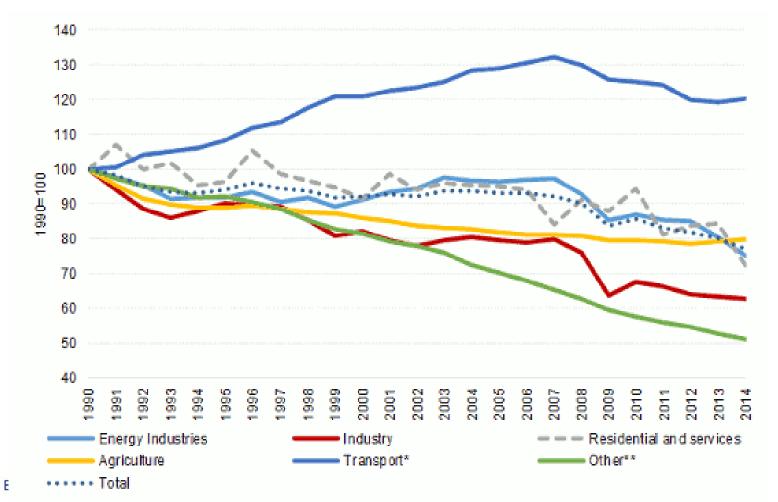
Adaptation

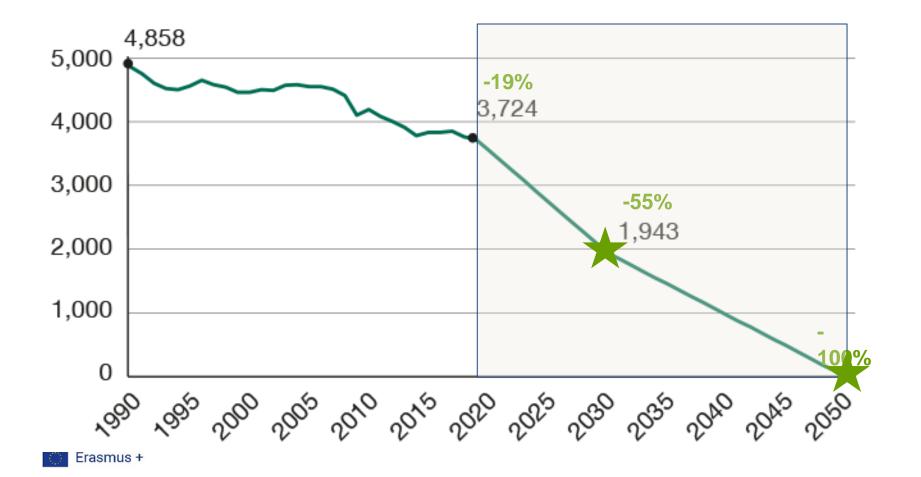


Contribution to global emissions by sector

Global GHG Emissions by Sector

2016 global emissions of greenhouse gases (fuel combustion emissions attributed to energy consumers)


Energy industry own use (4.4%) Manufacturing and construction (24.3%) Transport (Road) (12.1%) Transport (Int. Shipping) (1.4%) Transport (Int. Aviation) (1.1%) Transport (Other) (1.9%) Residential (11.0%) Commercial (6.7%) Unallocated Combustion (3.6%) Agriculture (11.9%) Land Use Change and Forestry (6.6%) Waste (3.2%) Industrial Processes (5.7%) Fugitive Emissions (5.9%)



Trends in emissions

Trends in emissions

What can we do to mitigate climate change? Reducing sources

Share (rounded)	billion euro	Field	Mt CO ₂ e	Societal benefits	
		Emission reduction trend preceding the EGD	39		
10%	25	Frontloading a 100% renewables grid	30		
8%	20	Transforming the car-based mobility system	18	Health	
8%	20	European Silk Road	20	Growth, cohesion	
27%	70	Energy renovation of buildings	24	Employment	
12%	30	R&D for energy-saving digitalisation	30		
12%	30	Advanced green vocational education	catalyst	Convergence, employment	
12%	30	European breakthrough innovation system	catalyst	Employment	
4%	10	Subcontracting management tasks for EGD	catalyst	Employment	
8%	20	European planetary health policy	catalyst	Health, employment	
100%	255	Total public investment per year			
		Total emissionreductions per year	161		



What can we do to mitigate climate change? Reducing sources

Share (rounded)	billion euro	Field		Mt CO ₂ e		ns (Europ		or 27% of EU Environment	
		Emission reduction trend preceding the	EGD		39				
10%	25	Frontloading a 100% renewables grid			30				
8%	20	Transforming the car-based mobility syst	tem		18	Health			
8%	20	European Silk Road			20	Growth cohesi	20		
27%	70	Energy renovation of buildings	_			TWh			
12%	30	R&D for energy-saving digitalisation		Fossil fuels net ger (lignite and hard co oil, mixed fuels, po	oal, gas,	1497.2	0.8	3%	
12%	30	Advanced green vocational education		Renewable net generation (renewable hydro, wind, solar, biomass, geothermal)		1300.6	22.1%	0.9%	
12%	30	European breakthrough innovation sys							
4%	10	Subcontracting management tasks fo		Thermal nuclear net generation		808.8			40.8%
8%	20	European planetary health policy	nergeneration						
100%	255	Total public investment per year		Hydro net generation (except renewable part)		29.2			
		Total emissionreductions per year		Net generation not	identified	32.0	35.5%		

Why are human-induced emission important?

What can we do to mitigate climate change? Safeguard the carbon sinks

Ocean

The oceans have collectively absorbed about **25% of the carbon dioxide** released into the atmosphere since the Industrial Revolution (mostly phytoplankton)

 \rightarrow reduce plastic pollution

What can we do to mitigate climate change? Safeguard the carbon sinks

Forests

The forests absorb around 2.6 billion tons of CO2 every

year

 \rightarrow protect forests

What can we do to mitigate climate change? Safeguard the carbon sinks

Soil

The soil absorbs roughly 25% of all human emissions each year (mostly in peatland and permafrost).

 \rightarrow reform land use models

Yet, the climate is changing

Table 1 Projections of climate change impacts

Averages in 2081-2100 relative to 1986-2005

	RCP 2.6	RCP 8.5		
Temperature 0.3 - 1.7 C 2.6 - 4.8deg C		2.6 - 4.8deg C		
Sea levels	0.26 - 0.55 m	0.45 - 0.82 m		
Precipitation	Increase in average precipitation in high latitudes, decrease in subtropical and mid-latitude dry regions			
Ice cover	Arctic sea ice cover will be reduced, as will the extent of permafrost in high northern latitudes			
Extreme weather events	xtreme weather events Risks associated with some types of extreme weather events, including heatwaves and heavy precipitation, are projected to increase with climate change			

Railway

Phenomenon	Associated weather hazard	Secondary associated hazard(s)/impact(s)	Possible adverse effect on railway infrastructure
Temperature	High temperatures	Heatwaves; wildfire	Buckling of rails; thermal expansion in structures
	Large seasonal temperature range	Permafrost thaw	Differential thaw settlement of track bed in permafrost regions
	Low temperatures	Snow; ice; frost; freeze-thaw action	Damage to overhead lines and signaling equipment; rock falls; freezing of points ^a ; tunnel icing; cracking/breakage of rails
Precipitation	Excess precipitation	Flooding (surface water, fluvial, groundwater); infiltration; landslide	Infrastructure slope failure; bridge scour; flooding of track, depots, buildings; water damage to electronic equipment
	Precipitation deficit	Drought; drying of soil; shrinkage cracking; landslide	Infrastructure slope failure; track misalignment; misalignment of poles supporting overhead lines
Wind	Windstorms/gales	Tree fall; wind-blown objects	Downed power lines; structural damage and/or track misalignment by fallen trees/wind-blown objects

Aviation

Northern Europe

< NO

CH

10

- Increasing damage risk from winter storms
- Increase in summer tourism
- Decrease in energy demand for heating
- Risks to infrastructure due to reductions in ground frost

PL

SK.

HU

1.1

RO

LT

Sources: (Sources: IPCC, 2007a, EEA, 2012, FITED & ENSEMBLE, 2009 EWENT, 2012; WEATHER, 2011)

North-Westen Europe

- Infrastructure damage due to increased winds/storms
- Increased drainage requirements
- Loss of capacity and delay due to increased storminess
- Decrease in energy demand for heating

Mountain regions

Decrease in winter tourism

Central and eastern Europe

 Infrastructure damage due to increased winds/storms
 Loss of capacity and delay due to increased convective weather

TR

Coastal zones

 Sea-level rise and storm surges threaten capacity and infrastructure

Mediterranean region

CZ

AT

SI SHE

 Decrease in summer tourism / potential Increase in other seasons

BA

- Increased energy demand for cooling
- Temperature impact on climb performance

Roads and Urban Transport

- Heat stress: enhanced pavement degradation, especially relevant for asphalt road pavement.
- Freezing days: road pavement degradation, in combination with frost cracking and pothole effects, depending on asphalt binder.

Roads and Urban Transport

- Severe precipitation: insufficient drainage, risk of inundation along the coasts, risks for bridges due to scouring
- Storms: trees or branches falling and obstructing the road system

Energy sourcing, distribution and demand

Climate impact	Generation	Transmission and distribution	Demand	
Rising global temperatures	 Efficiency Cooling efficiency Generation potential Need for additional generation 	Efficiency	 Cooling and heating 	
Changing precipitation patterns	 Output and potential Peak and variability Technology application 	Physical risks	CoolingWater supply	
Sea-level rise	OutputPhysical risksNew asset development	 Physical risks New asset development 	Water supply	
Extreme weather events	Physical risksEfficiency	Physical risksEfficiency	Cooling	

Renewable resources

Thank you for your time!

Alessandra Tedeschi

Alessandra.tedeschi@dblue.it

